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Abstract

We study routing problems in time-dependent and
edge- and/or vertex-labeled transportation networks.
Labels allow one to express a number of discrete prop-
erties of the edges and nodes. The main focus is a
unified algorithm that efficiently solves a number of
seemingly unrelated problems in transportation sci-
ence. Experimental data gained from modeling prac-
tical situations suggest that the formalism allows in-
teresting compromises between the conflicting goals
of generality and efficiency.

1. We use edge/vertex labels in the framework of For-
mal Language Constrained Path Problems to handle
discrete choice constraints. The label set is usually
small and does not depend on the graph. Edge labels
induce path labels, which allows us to impose feasi-
bility constraints on the set of paths considered as
shortest path candidates.

2. Second, we propose monotonic piecewise-linear
traversal functions to represent the time-dependent
aspect of link delays. The applications that can be
modeled include scheduled transit and time-windows.
3. Third, we combine the above models and capture a
variety of natural problems in transportation science
such as time-window constrained trip-chaining. The
results demonstrate the robustness of the proposed
formalisms.

As evidence for our claims of practical efficiency in a
realistic setting, we report preliminary computational
experience from TRANSIMS case studies of Portland,
Oregon.
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1 Introduction

We study route-planning models in the context
of multi-modal urban transportation systems.
The research reported in this paper should be
viewed as applied research backed by experi-
mental analysis in realistic settings. Specifically,
much of the basic theoretical background for
these results is not new and can be found in
[BJM98]. Our initial motivation for this study
was the TRANSIMS project for transportation
analysis and simulation [TR+95a]. Nevertheless,
we argue that the solutions are not TRANSIMS-
specific, but applicable to a number of other re-
alistic transportation problems.

TRANSIMS is a multi-year project at the Los
Alamos National Laboratory and is funded by
the Department of Transportation and by the
Environmental Protection Agency. The pur-
pose of TRANSIMS is to develop new mod-
els and methods for studying transportation
planning questions. A prototypical question
considered in this context would be to study
the economic and social impact of building a
new freeway in a large metropolitan area. We
refer the reader to [TR+95a] and the web-
site http://transims.tsasa.lanl.gov to ob-
tain extensive details about the TRANSIMS
project. TRANSIMS conceptually decomposes
the transportation planning task into three time
scales. First, a large time-scale associated with
land use and demographic distribution as a char-
acterization of travelers. In this phase, demo-
graphic information is used to create activities
for travelers. Activity information typically con-
sists of requests that travelers be at a certain
location at a specified time. and they include in-
formation on travel modes available to the trav-



eler. Second, an intermediate time-scale consists
of planning routes and trip-chains to satisfy the
activity requests. This is the focus of our paper
and the TRANSIMS module responsible for this
computation is called the route planner. Finally,
a very short time-scale is associated with the ac-
tual execution of trip plans in the network. This
is done by a simulation that moves cellular au-
tomata corresponding to the travelers through a
very detailed representation of the urban trans-
portation network.

The basic purpose of the route planner is to use
the activity information (generated earlier from
demographic data) about a traveler to determine
specific optimal mode choices and travel routes
for each individual traveler. The routes need
to be computed for a large number of travelers
(in the Portland case study 5-10 million trips
are planned). In order to remove the forward
causality artificially introduced by this design,
and with the goal of bringing the system to a “re-
laxed” state, TRANSIMS has a feedback mecha-
nism: the link delays observed in the simulation
are used by the route planner to re-plan a frac-
tion of the travelers. Clearly, this mechanism
requires a high computational throughput from
the planner. The high level of detail in planning
and the efficiency demand are both important
design goals; methods to achieve reasonable per-
formance are well known if only one of the goals
needs to be satisfied. Here, we propose a frame-
work that uses two independent extensions of the
basic shortest path problem to cope with these
design requirements simultaneously.

2 Theoretical Results

Our main contribution is a unified modeling
framework and an associated efficient algorithm
for constrained shortest paths in multi-modal
and time-dependent networks. @ The advan-
tages of our framework are: (1) translation of
“real world” questions into mathematically well-
defined optimization problems, (2) guidance in
the development of algorithms for these prob-
lems, and (3) a single efficient algorithm for a
host of seemingly different optimization prob-

lems in transportation science.

An additional goal is to show how to use this
framework and the associated algorithm to solve
extremely large realistic transportation prob-
lems. From a pragmatic point of view, a generic
algorithm simplifies the implementation of and
experimentation with alternative models. To il-
lustrate the third point above, we give exam-
ples where alternative, more direct algorithms
are known. The unified framework consists of
the three parts described below.

First, we consider models and algorithms for
shortest paths with discrete choice constraints.
These include travel modes, destination choice,
roadway type, etc. In general many of these
choices cannot be modeled adequately by edge-
weights, but edge- or vertex-labels are more
appropriate. Motivated by this, we represent
the transportation network by a (possibly time-
dependent) weighted, (vertex- and/or edge)-
labeled graph. The labels denote modal or other
discrete attributes of the edge (vertex) and are
drawn from a finite set. We use regular ex-
pressions over the label set to describe feasible
paths, explain how to solve these problems ef-
ficiently and show how this model encompasses
a wide variety of discrete-choice transportation
problems (Section 4.2). Regular languages as
models for constrained shortest-path problems
were suggested earlier by Romeuf [Rom88] and
applications to database queries were described
by Yannakakis [Ya90] and by Mendelzon and
Wood [MW95]. For more details, we refer to
Barrett, Jacob and Marathe [BJM98].

Second, we discuss finding (optimal) paths in
time-dependent networks. This is an impor-
tant problem in transportation science [Ch97a,
Ch97b, ZM95, ZM92, ZM93]. We propose mono-
tonic piecewise-linear link traversal functions to
model time-dependence. We argue that this class
is (1) adequate for modeling time-dependent
edge lengths in rapidly changing conditions on
roadways and (2) flexible enough to describe
more complicated scenarios such as scheduled
transit and time-window constraints but also
(3) allows computationally efficient algorithms.
For example, a prototypical question consists in



finding the shortest route that takes into ac-
count the bus and train schedules. We solve
this problem efficiently in our framework (Sec-
tion 5.3). The ideas we present here are built on
a well-established literature on time-dependent
shortest-path problems (for a survey see Orda
and Rom [OR91]).

Finally, we show how to combine the two mod-
els (labels and time-dependence) and the pro-
posed algorithms to capture a variety of im-
portant problems including time-windows, trip
chaining, etc. These results further demonstrate
the robustness of our models and algorithms. To
the best of our knowledge, only heuristic meth-
ods have been used so far to solve such problems.
Reference [SHKO1] also recently considered an
efficient heuristic improvement of this unified al-
gorithm.

3 Experimental results

As mentioned earlier, the algorithms described
here have been implemented as part of the
TRANSIMS project. This allows testing or
our methods on real transportation networks.
In order to anchor research in realistic prob-
lems, TRANSIMS uses example cases called
Case studies (see [CS97] for details). Two case
studies have been designed—the first one, con-
cluded in May 1997, focused on the Dallas/Fort-
Worth (DFW) metropolitan area. It was done
in conjunction with a municipal planning orga-
nization (MPO) (the North Central Texas Coun-
cil of Governments, NCTCOG). The second case
study is currently underway and focuses on Port-
land, Oregon. While the goal of the DFW case
study was mainly validating uni-modal traffic
simulation, the Portland case study will attempt
to validate our models and algorithms for multi-
modal time-dependent networks. Due to the fo-
cus of this paper, we will mainly focus on illustra-
tive experiments done in the context of Portland
network. A more detailed experimental study
will be found in [BB+01].

Section 7 discusses illustrative experiments that
allow us to infer (i) the scalability of our meth-
ods, (ii) the power of the modeling framework in

capturing realistic problems, (iii) and empirical
improvements obtained by augmenting the basic
algorithm with heuristic methods.

4 Language-constrained paths

Consider a small pedestrian bridge across a river
(or a highway). A traveler can only use the
bridge on foot. Since we do not wish to up-
date the network for every single routing ques-
tion, we annotate the network with such infor-
mation. More precisely (and abstractly), to each
edge and/or vertex of the network, we assign a
class (label) £ € 3. (X is a finite set we refer to
as the alphabet.) We call such labels modes and
say that a labeled network is multimodal.

By concatenation, the edge and/or vertex label-
ing extends to walks. The resulting string of la-
bels is called the label of the walk. This walk-
label determines whether or not the walk is ac-
ceptable as a particular traveler’s itinerary. We
usually refer to walks in the network as paths;
in other words, we usually allow our paths to re-
peat edges and/or vertices and instead use the
term simple path to denote paths.

More precisely, we specify a language L C X*
over the alphabet Y such that any path whose
label belongs to L is acceptable. Now we can
raise a shortest-path question: given a source
node s and a destination node d, find a shortest
path p from s to d whose label belongs to L.

Example 4.1. Multimodal planning. In a
simple multimodal network the edge-labels de-
note modes of travel allowed on the link. For ex-
ample, streets will be labeled “c” for car travel,
sidewalks and pedestrian bridges “w” for walk,
segments of transit lines (buses, rail) “b” and
“r”, respectively (or, in a simpler model, lumped
together under “t” for transit).

Consider routing a traveler who doesn’t own a
car and takes a bus to her destination. Suppose
transfers are undesirable. The traveler will use
some walk links, then one or more bus links and
finally again some walk links.

In order to find a shortest path for this trav-
eler, the following network suffices. Let there be



a vertex for every intersection and every transit
stop. For every street block passable to pedes-
trians (that is, with a sidewalk) between two in-
tersections, add a bidirectional link labeled “w”.
For every bus line, add a unidirectional link be-
tween every consecutive pair of stops and label it
“b”. Make sure that in order to transfer between
buses, a walk link must be used. Now the goal
is to find a shortest path between the traveler’s
origin and destination whose label is of the form
w...wb...bw...w. [l

Note that finding a shortest path with the re-
striction imposed in the example above does not
become any more difficult if the network in-
cludes additional arcs with different labels (such
as streets (“c”), railway links (“r”), etc.). This
shows an important feature of our framework: it
is possible to treat different modal constraints by
changing only the constraining language. Thus
we can plan all trips on the same underlying net-
work and avoid the expensive network modifica-
tion for each different modal constraint.

The following definition formalizes the language
constraints. If p is a path in G, by [(p) we denote
the label of p, that is, the concatenation of labels
of consecutive edges in p.

Definition 4.2, (Language-constrained
shortest-paths.) Given a directed, labeled,
weighted graph G, a source s € V(G), a destina-
tion d € V(G) and a formal language (regular,
context free, context sensitive, etc.) L, find a
shortest (not necessarily simple) path p from s
to d in G such that I(p) € L.

A complexity analysis of the formal-language-
constrained shortest and shortest simple path
problems was given by Barrett, Jacob and
Marathe [BJM98]. We summarize their results
here, using n to denote the number of vertices in
the graph G:

(1) If the path is required to be simple, almost
all problems are NP-hard. Thus, we only
consider shortest paths without the simplicity
constraint.

(2) The problem of finding a
free-language-constrained  shortest

context-
path is

polynomial-time solvable, but the high com-
plexity O(n3sr) (where s is the number of
nonterminals and r the number of rules in the
Chomsky normal form of the grammar) of the
fastest known algorithm restricts its practicality.
(3) If the language is specified by a nondeter-
ministic finite automaton (NFA), the problem
reduces to an ordinary shortest-path problem
on a graph with n - k vertices, where k is the
number of vertices in the NFA. The solution is
in fact a shortest path in the direct product of
the graph G and the directed graph representing
the NFA.

The last model is the one we consider the most
practical for transportation science applications.
Hereafter we assume that the constraining lan-
guage L is specified as a regular expression.

4.1 Algorithm for linear expressions

We now describe the algorithm actually imple-
mented in TRANSIMS. First, some (standard)
notation: w' denotes one or more repetitions of
a word (string) w, = + y denotes either z or y, &
typically denotes the alphabet, that is the set of
all available symbols.

TRANSIMS currently supports linear (or
simple-path) regular expressions. They are of
the form 2 z3 - -z}, where z; € SU(S+X) for
all 1.

Note that if Ry, Ra,... Ry are linear regular ex-
pressions, then the expression Ry + --- + Ry can
also be easily handled by finding the best path
for each R; and then choosing the best one. We
call such expressions rooted paths regular, since
the automata graphs form a set of simple paths
joined at the root.

Algorithm 4.3. Input: A linear regular expres-
sion R (as the string R[0...|R| — 1], a directed
edge-labeled weighted graph G, vertices s and
d € V(G). Output: A minimum-weight path p*
in G from s to d such that I(p*) € R.

Conceptually the algorithm consists of running
Dijkstra’s algorithm on the direct product of
G and the finite automaton M (R) represent-
ing R. For efficiency, we do not explicitly con-
struct G x M(R), but concatenate the identifier



of each vertex of G with the identifier of the ap-
propriate vertex in M (R).

In other words, we run Dijkstra’s shortest-path
algorithm on G with the following changes: each
vertex is referred to by the pair consisting of its
index in G and an integer 0 < a < |R| —1
denoting the location within R. In the first
step, a = 0 and the only “explored” vertex is
(s,0). In each subsequent exploration step of
Dijkstra’s algorithm, consider only the edges e
leaving the current vertex (v, a) with [(e) = R][a]
or [(e) = Rla+ 1]. If an edge e = vw with
l(e) = R[a + 1] is explored, then the vertex
reached will be (w,a + 1). Otherwise the ver-
tex reached is (w,a). The algorithm halts when
it reaches the vertex (d,|R| — 1). O

Theorem 4.4. Algorithm 4.3 computes the
shortest R-constrained path in G (with nonneg-
ative edge-weights) in time O(T(|R||G|)), where
T(n) denotes the running time of a shortest-path
algorithm on a graph with n nodes.

The running time of the algorithm is equal to
O(|G| + |R| + Heaplog(Heap)), where |G|, |R)|
and Heap respectively denote the encodings of
graph and regular expression and the maximum
size the heap grows to. The algorithm yields sig-
nificant savings of time in practice. First, we
do not need to construct the product explicitly
saving us at least O(|G|-|R|) time. Second, typi-
cally the heap size never grows to much. In fact,
it appears that the run time of the algorithm is
more a function of the path length rather than
the entire graph. Our results in the experimental
section discuss this further.

4.2 Examples of regular constraints

We give some illustrative examples of regular ex-
pressions that might be useful in the context of
transportation planning. Rather than being ex-
haustive, this is a list of problems solvable by a
single algorithm and implementation.

1. Trip chaining. Consider the follow-
ing problem: given a sequence of activities that
can be performed at different locations, find the
shortest path that allows the traveler to per-

form the activities in the given order. To solve
the problem, we create new “virtual” loop links
at every possible activity location. We label
these links according to the activity that can
be performed there. For an activity sequence
ABC ... we would consider the regular expres-
sion TATBTCT ... where T denotes a regular
expression that allows (arbitrary or restricted)
travel in the network. Note that this does
not solve the traveling salesman problem (TSP)
problem in polynomial time—there we would
have to consider all possible n! orderings of n
activities to find an optimal solution. On the
other hand, if the number of activities n is small,
enumerating the n! sequences might be feasible.
Figure 1 shows an exmaple trip chained route
produced for a traveler in Portland.

s kR T
first person in househotd

Figure 1: Example of two trip chained routes
for two traverles in Portland generated using our
router. The first person goes as follows: Home-
work-lunch-work-Doctor-shop-home.

2. Label subsets and consistent paths.
In the course of generating valid activities for
planning and microsimulation, it is necessary to
ensure that the paths generated are consistent in
their use of modes. For instance, if you parked
a car at a subway station, the path found by
these methods should make sure that you do not



drive until you return to the particular parking
lot where you left the car. Additional exam-
ples include (1) finding a shortest path avoid-
ing trains or highways; (2) making sure that if
we drop our car at a parking lot and then use
transit to go to work, we do not use the car for
errands during the day; and (3) finding a short-
est path that may use the freeway but not the
interchange. In all of these examples we restrict
the path to use only a particular set of labels.
This can be achieved by a single-state automa-
ton. (Alternatively we could remove unwanted
links from the network, but doing this explicitly
is time-consuming.)

3. Intermediate location. Finding paths
that use trains so that the train is boarded at a
particular subway station.

Here we have to mark the subway station(s) we
consider using an appropriate label and then en-
force the use of a vertex with this label within the
path. This can be done with a two-state automa-
ton. (Alternatively we could split the question
into two shortest path computations.)

4. Multimodal plans. See Example 1.

5. Selecting road types. As mentioned
earlier, we can use regular expression to express
the choice of various road types a traveler might
wish to take. Figure 2 illustrates this type of
a query on a realistic traffic network—the Dal-
las/Ft. Worth road network. As explained in
the Figure, a traveler can specify the type of
roads (e.g. freeways, ramps, arterials) that (s)he
wishes to use to complete the trip.

6. Counting constraints. An automaton
with k£ + 1 states can count up to k occurrences
of special links. Thus we can only examine paths
with more than k, exactly k or less than k special
links. In the latter case we get the simplicity for
free. (This follows, for example, from a more
general result [MW95].)

The following problems have been studied in the
literature and can be immediately solved using
the appropriate expression.

6a. k-similar paths. There has been con-
siderable interest in algorithms for alternatives

Figure 2: Example in Dallas: unrestricted fastest
route is depicted by a straight dashed line, (this
is also the fastest route entering the highway sys-
tem at most once), the fastest route that does
not switch between different highways is dashed
and curved, the fastest route that stays off the
highways is solid.

to shortest paths [AMO93]. For example, in a
recent paper [SJB97], the authors consider the
following problem: given a graph G, a (short-
est) path P in G and an integer parameter, find
the shortest path @ in G that has at most k
links in common with P. Call this path the best
k-similar path. The authors use a Lagrangian
relaxation. Although the algorithm appears ef-
ficient in practice, it is exponential in the worst
case.

Using the above terminology, we make all the
links of the (shortest) path P “special.” Then
the described automaton ensures that the path
found does not have more than k links in com-
mon with P.

6b. Turn complexity.  Assume we have an
extended network, where every movement across
an intersection (going straight or turning) is ex-
plicitly represented as a link. Then we can use



2 and 6a above to search for the shortest path
using, for example, less than k left turns.

6c. Transfers. If the network representation
uses links of different type to represent bus trans-
fers, we can easily encode the maximum number
of transfers allowed.

5 Time-dependent delays

Experience with realistic transportation systems
and simulations like TRANSIMS makes it clear
that the dynamics of the link delays are an
important component of urban traffic. The
problem of finding the “best” path in a time-
dependent network has been studied extensively
(see for example [OR90, ZM95, ZM93]). Since
the literature on this subject contains different
notions of time-dependence, we first define our
terminology.

The fundamental assumption is that the delay
incurred by traversing a link cannot be repre-
sented by a single value. Instead, every link (a, b)
in the network has an associated link traversal
function f(, ), defined so that a traveler starting
across the link at endpoint a and time t arrives
at endpoint b at time f(, ) (1)

Definition 5.1. A path from a source s to a
destination t is a sequence of n + 1 wvertices
Vg, V1, . .. Unp and times tg,t1,...,t, that satisfies
(1) vo = s; (2) there ezists a link from v; to vi1;
(8) if f is the link traversal function for the link
from v; to vy, thentiv1 = f(t;); and (4) v, = t.
The numbers ty and t, are also referred to as the
departure time and arrival time, respectively.

Earliest arrivals and delay assumptions.
As a motivation, consider a traveler starting
from an origin node at a certain point in time
and looking for a route through the network with
the earliest possible arrival time at the destina-
tion. Orda and Rom [OR90] present a theoret-
ical study of the complexity of such shortest-
path problems. Their basic model consists of
a function which describes the delay incurred in
traversing the link by a traveler who reaches the
link at a given time. Such a function is called

the Iink delay function. Note that we prefer link
traversal functions, however, it is easily verified
that these two formalisms are equivalent. Let
f Q@ — Q be a link-delay function. Then the
equivalent link traversal function ¢ : Q — Q is
defined by t(z) = f(z) +z. We assume two con-
ditions on delays/traversal times.

The first is the delay nonnegativity constraint
f(z) > 0 which becomes t(z) > x for a traversal
function ¢ (we also write this as ¢ > id). A link
traversal function ¢ whose equivalent link delay
function is nonnegative is said to have a positive
delay.

The second is the first-in-first-out condition, that
is a traveler entering the link first leaves the link
first as well. This is ensured by the fact that
the link traversal function ¢ is monotone nonde-
creasing, that is f(t') > f(¢) if ¢ > t. Strictly
speaking, this condition is not realistic because
it ignores, for example, passing by cars on the
roads. However, without it the problems become
too difficult. Note that we do not restrict our
functions to Q*; this is necessary in order to de-
fine an incoming shortest-path tree, which cor-
responds to a shortest-path request with a fixed
arrival time.

5.1 MPL functions

The two assumptions of the previous section
were motivated by common sense (nonnegativ-
ity) and computational feasibility (monotonic-
ity). To get a class of functions that is flexi-
ble enough to model various applications, but
also allows efficient modeling within a computer
program, we use monotonic piecewise-linear
(MPL) functions. Among other properties, this
class allows fast lookup of values and this is im-
portant, being a part of the innermost loop of
the algorithm. But first, the definitions.

Using +oc is a convenient shortcut for expressing
(temporary) unavailability of a link. Thus we
define the traversal functions on the extended
set of rational numbers Q = Q U {c0, —oc0}.

Definition 5.2. A function f: Q — Q s
called piecewise linear if there exist values
1,%2,...,n € Q such that z; < xiy1 and



for t € (z;j,xziy1) the value of f is given by
ft) =a; +t-b; for some a;,b; € Q.

Monotonic functions also have the advantage of
being (almost) invertible.

Definition 5.3. Let f: Q — Q be an MPL func-
tion. Then g: Q — Q is a weak inverse of f
if g is MPL, g(t) > sup{z : f(z) < t} and
g(t) <inf{z:t < f(z)}.

This definition leaves one the choice of an “opti-
mistic” or a “pessimistic” weak inverse for con-
stant f. Other than this, g is uniquely deter-
mined. Let g be any weak inverse of f. It is easy
to verify that f is also a weak inverse of g. Fur-
thermore g is piecewise linear if f is piecewise-
linear. (Proofs can be found in the appendix.)
A data structure for MPL functions is for ex-
ample a sorted set of pairs that can be searched
for both z and (linearly interpolated) y values.
For functions that do not need to be modified
frequently, an implementation using arrays and
binary search performs well.

5.2 Properties of MPL functions

After having introduced the basic concepts of
MPL-functions, we now summarize several use-
ful properties and alternative characterizations.

1. First-in-first-out property: If traveler A en-
ters the link before traveler B, the mono-
tonicity implies that B cannot leave the link
before A. (No passing.)

2. Traversal-delay equivalence: A piecewise-
linear traversal function corresponds to a
piecewise-linear delay function and vice
versa.

3. (Temporary) unavailability of a link can be
modeled using +oo as the time values.

4. (Weak) invertibility allows simultaneous an-
swers to earliest arrival and latest departure
questions. Simple data structures evaluate
a function and (a specific) one of its weak
inverses.

5. Rounding errors are well understood. If
appropriate we can work with integers
and (implicitly) approximate by piecewise-
constant functions.

6. Continuity is not necessary for the shortest-
path algorithm. Even piecewise-constant
link traversal functions are suitable. (Not
true for link delay functions.)

7. The functions can be “split”:

Proposition 5.4. Let ¢ be a monotonic,
piecewise linear function with n interpola-
tion points and a constant f € (0,1). Then
there exist two piecewise linear functions a
and b with n interpolation points satisfying
the following properties: (i) a =id+ f-(c—
id) and (1) c=boa.

5.3 Time-dependence applications

We illustrate the applicability of MPL functions
to modeling link delays by giving a few examples.
The main goal is to convince the reader that such
functions are adequate for many real situations.

1. Routing on a street network. Assume
that we have statistics for every link in a road
network used by cars. For example, consider the
value of the average speed of the cars arriving at
the end of the link within a 15-minute time bin.
This data may come from real observations or
(more likely) from a simulation, as is the case in
TRANSIMS. In TRANSIMS link traversal func-
tions are created using interpolation points: we
aggregate the information from every time bin
into an imaginary car that arrives at the end
of the link precisely in the middle of the time
bin. Assuming the car has been moving at the
reported average speed, we calculate the corre-
sponding departure time into the link. These
interpolation points get are then joined by line
segments. In similar ways we can use statistics
that report average speed of cars starting into
a link during a time bin or just speed averages
during a time bin. The difficulty (if any) in inter-
preting this kind of statistic does not arise from
the fact that we want to construct a piecewise



linear function. However, we must verify that
the resulting link traversal functions are in fact
(weakly) monotonic, as expected.

2. Transit with schedules. Consider the
earliest arrival problem with scheduled transit.
A fixed and accurate schedule for the public
transportation system is given and used to cre-
ate a network with link traversal functions. For
simplicity we only look at transit, ignoring the
walking part of using transit, and assume that
the source and destination are transit stops.
The graph has a node for each transit stop, us-
ing the same node for several lines if a transfer is
possible at the stop. This allows transfers even
if the gains are minimal. Some important details
like the volatility of real schedules (buses more
than trains) and the inconvenience of transfer-
ring are ignored.

A bus going from one stop to another defines a
link whose traversal function is defined so that if
we arrive at the bus stop before the bus leaves,
we will be at the next bus stop at the arrival
time of the bus. Otherwise we will not get there
at all.

Formally, assume a bus departs from node A at
time ¢; and arrives at node B at time #; + A.
Then the link traversal function for the link

(4, B) is given by

To model several buses on the same line during
the day, we simply combine the functions: the
arrival time at the other end of the link coin-
cides with the arrival time of the next bus on
the same line. Such a combination is illustrated
in Figure 3. In the figure all the buses but one
are assumed to take the same time in traversing
the link. It is straightforward to adjust the func-
tions to the fact that at different times of the day
the busses travel at different speeds; the buses
may in fact be simulated themselves by forcing
them to take the scheduled route and the actual
simulation delays and congestion may be incor-
porated in the schedule.

t1 + A,

o0,

ift S tl;
ift; < t.

f(®) (5.1)

3. Shortest path with departure time win-
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exit time
| =" abusthat never came
$ bustravel time

enter time
t

Figure 3: Link traversal function for transit.

dow.  Another problem expressible in our for-
malism is the following: given a time-dependent
network, a source-destination pair and a depar-
ture time window, find the departure time within
the time window and a path that minimizes over-
all travel time. The algorithms presented so far
cannot solve this question directly. Moreover, al-
though the problem is exactly solvable in polyno-
mial time for unrestricted waiting or monotonic
link traversal functions [OR90], the running time
might be unacceptable. Therefore we propose an
approximation algorithm (in fact an approxima-
tion scheme with bounded absolute error) with
significantly improved running time. We believe
that for real world queries the performance is
actually even better than our theoretical bounds

imply.
Choose a granularity parameter 7. Find a se-
quence $1, 89, - - - , Sp such that s;11—s; <T'. The

time window considered is then [s1, s,]. Evalu-
ate the fastest path question for all the s; and
take the shortest of those. The worst case oc-
curs when you might have stayed at origin for
nearly time 7" and still arrive at the same time.
Therefore the approximate path takes at most T’
times the optimal time.

6 Combinations

In this final technical section, we consider com-
binations of the two extensions discussed so far.
A desirable feature of the approach is that the
algorithm for solving routing problems in time-
dependent and the algorithm for solving routing



problems in labeled networks can be combined
to yield a unified algorithm for routing in time-
dependent networks with labeling constraints.

6.1 The Algorithm

Algorithm 6.1. Input: A linear regular expres-
sion R (as the string R[0...|R| — 1], a directed
edge-labeled graph G, vertices s and d € V(G).
An MPL traversal function associated with each
edge. Output: A path from s to d that requires
minimum travel time among all those whose la-
bels satisfy R

Similarly to the fixed-delay case, we run Dijk-
stra’s algorithm on G x M(R). The algorithm
remains the same except that link-traversal de-
lays are computed using the MPL functions. To
see why this algorithm is correct, think of it as
the standard Dijkstra’s algorithm run on a graph
consisting of multiple copies of G X M (R), one for
each possible time-step. For each time-step ¢, a
copy of e = uv € E(G x M(R) with delay f(e,t)
joins the tth copy of u to the t+ f (e, t)-th copy of
v The algorithm stops when it reaches any copy
of the destination vertex d. No vertex is seen
twice (even with time-dependence) because the
MPL functions are FIFO.

For efficiency, we still do not explicitly construct
G X M(R). In fact, the only change in the algo-
rithm is contained in the function that returns
the time at which the traveler would arrive at the
end of a link as a function of the link identifier

and the current time. O
6.2 Examples
1. Trip chaining with time windows. A

real-world variant of the trip chaining problem
includes a time-dependent transportation net-
work and business hours of the locations where
we could perform our activity. To accomplish
this, we first create a virtual link (a self-loop)
at each activity location. We then use an ap-
propriate link traversal function on the virtual
link representing the activity at a certain loca-
tion. Note that this allows us to adapt to dif-
ferent business hours at different locations of the
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same type, for example grocery stores. The link
traversal function is created to capture the fol-
lowing semantics: if we “enter” before the shop
opens, we “arrive” at the opening time of the
shop, during working hours we arrive immedi-
ately (delay 0), after the shop closes we arrive
at time +oo, i.e. never. Formally let a shop s
open at time %, and closes at time .. The link
traversal function on the virtual link I is given

by

to, ift <ty
f1.(t) =< ¢, if t, <t <t (6.1)
oo, ift. <t

A function corresponding to a business closed
over lunch break is illustrated in Figure 4. To
make sure the business is visited during office
hours, we label its virtual link and require that
the label be used by the path we find. Now solv-
ing the shortest-path problem on the modified
network with the regular expression constraint
yields the required solution.

Note that we can encode the time needed to per-
form the activity into the link traversal function,
modeling for example a situation where we ex-
pect the length of queues at the counter to vary
with the time of day.

x closing

.7 afternoon
crowd

exit time

f(t)

enter time
t

f

store opens

Figure 4: Link traversal function for a store that
closes for lunch break and does a lot of business
in the afternoon .

2. Vehicle availability. The problem can
be stated as follows: find a pair of trips from
home to work and back, such that the car is



picked up by the second trip exactly where it
was left in the first trip. Minimize the overall
travel time, i.e the time between departure and
arrival at home. We assume fixed arrival and
departure times at work. (Otherwise one can do
the same type of interval search as for the time
window departure.) We solve the problem in our
framework as follows:

1. Compute the time-dependent arrival and de-
parture shortest-path tree with transit (not using
the car) from the workplace for the appropriate
times. This gives a pair of times at every pos-
sible parking location p: ¢,(p) is the latest time
we must arrive there in the morning to reach the
office in time and t¢4(p) is the earliest time at
which we can arrive at the parking location in
the evening after starting at a fixed time from
the office.

2. Construct a virtual parking link (a self loop
at each parking location p) and label it .

3. Each virtual link is assigned a link traversal
function as follows: as long as we come to the
parking lot earlier than ¢,(p) we arrive at the
end of the link at time t4(p). Otherwise (we are
late), we arrive at time 400, i.e. never. Formally,
for each virtual link p with times ¢,(p) and t4(p),
define fy(t) = t4 for all t < t,, and f,(t) = oo for
all t > t,. Note that this defines an MPL link
traversal function.

4. Then we choose a reasonable time window
and run the fastest path with time windowed
departure query from home to home subject to
the constraint ¢*ifct. Here ¢ denotes label of
a car link. The solution and the performance
guarantee obtained by solving this last problem
translate directly into a solution and guarantee
for the original problem. O
Note that for this algorithm, the street network
to be used with the car and the network a tran-
sit passenger uses are completely independent.
The process of parking the car and walking from
the parking lot to transit stop is modeled “in be-
tween” the two explicit networks. Reading out
the “virtual parking” link from the two shortest-
path trees allows us to model even additional
details, like a crowded parking lot.

This can be extended to the trip-chaining prob-
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lem with one point of the trip fixed in time.

7 Preliminary Experiments

As mentioned, the experiments were carried out
on a multi-modal transportation network span-
ning the city of Portland. The network represen-
tation is very detailed and contains all the streets
in Portland. In fact, data also specifies the lanes,
grade, pocket/turn lanes, etc. Much of this was
not required in the route planner module.

Types  Street  Parking Activity Bus+Rail Route
Nodes 100511 121503 243423 9771456 30874
Edges 249222 722745 2285594 55676 30249

Figure 5: Break down of links and edges by dif-
ferent types.

100 %
14.74

25 %
3.64

20 %
3.19

15 %
2.45

Runtime

Figure 6: Running time in hours as a function
of the fraction of total trips (8.9 million). This
is the total wall clock running time on the 124
CPU system.

The networks details are as follows: There
were 475 264 external nodes and 650 994 ex-
ternal links. Most of these links were bidirec-
tional. Moreover, no connectivity to parking
sites, houses, bus stops was provided. The com-
posite network on which we could route thus be-
came quite large, spanning half a million nodes
and over three million edges. (The number of
links and edges by mode types is given in Fig-
ure 5.) For instance edges under parking column
tell us how many edges go to and fro from park-
ing locations. The Portland population located
on this network is about 650 000 households with
approximately 1.8 million travelers who partici-
pate in 8.9 million activities during the course of
a 24 hour period.

Results.  We used (a subset) of the following
values measurable for a single or a specific num-
ber of computations to conclude the reported re-
sults

e (average) running time excluding i/o



e maximum heap size
e number of links and length of the path

Figure 6 shows the running time of our algo-
rithm. Roughly, it took 14 hours to run 8.9 mil-
lion trips on a 124 processor system. The scaling
can be seen to be roughly linear: 25 % trips re-
quired approximately 4.5 hours.

Figures 7 and 8 shows the traffic density in Port-
land downtown in the morning using the rout-
ing information. Figure 9 is a table describing
the average path lengths for set of approximately
1500 travelers using a given modal string. Three
different modal strings were used: w, wcw and
wtw. The Figure shows the path length in terms
the number of time taken with free flow speed,
the distance, and the number of hops. All of
them report numbers for free flow speed. Num-
bers when we iterate are available from the au-
thors. The last two columns denote respectivelt
the number of nodes touched and the running
time taken to find such a route.
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Figure 7: Plot showing the expected number
of people in the down town Portland area at 7
a.m. Color coding is green=normal, blue=dense,
red=very dense.

Figures 10 and 11 show the tradeoff between the
running time and quality of solution as we in-
crease the overdo parameter (as suggested by
our earlier work in [JMN99] and the work of
Sedgewick and Vitter [SV86]). See Section 9 for
details on this method. For the discussion here
it suffices to remember that overdo parameter
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Figure 8: Plot showing the expected number of
people in the down town Portland area at 8 a.m.
Note the increase in traffic.

mode time dist Hops Heapsize Runtime

W 4447 4688 41 28391 0.795275

cw 402 11445 58 25287 2.713795
wtw 21149 154 3827461 62.905374

Figure 9: Table showing the runtime and quality
of paths for three different modes. The last two
columns also show the number of nodes touched
and the time taken to calculate the paths.

is a multiplicative factor used to weigh the Eu-
clidean distance estimate of the current node to
the destination.

Figures 12-15 plot the dependence of the run-
ning time (in seconds) on (Fig. 12) the distance
(in meters) between the origin and the destina-
tion, (Fig. 13) the length of the trip (in nodes)
and the time (in seconds) the trip takes, for
(Fig. 14) car and (Fig. 15) walk trips. Su-
perficially, the dependence does not seem quite
linear (as we expected), but we postpone a
more detailed statistical analysis for a later pa-
per [BB+01].
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Appendix

8 Experimental Setup

Preparing the Network. The data about
parking locations, houses, bus stops, etc came
as separate file in form of geo-locations. Addi-
tionally the light rail data was given separately
and thus a substantial amount of time was spent
in creating a unified network with all the fea-
tures. It also naturally increased the size of the
network.

Software Design. We used the object ori-
ented features as well as the template mechanism
of C++ to easily combine different implementa-
tions. We also used preprocessor directives and
macros. As we did not want to introduce any
unnecessary run time overhead, we avoided for
example the concept of virtual inheritance.
Hardware and Software Support. Most
of the experiments were performed on a MPP
Linux cluster with either 46 or 62 nodes with
Dual 500 Mhz Pentium II processors in each
node. Each node had 1 Gb of main memory.
Much of the experiments were done by executing
independent shortest paths runs at each node.
For this we had to create copies of the network.
Fortunately the network fits in just under 1Gb
of memory and thus did not cause problems. As
mentioned earlier, the code can parallelized using
threads but the above method turned out to be
more suitable for the experiments reported here.
In particular it avoided much of the network con-
tention. We used the GCC compiler. We note
that due to design requirements our code is also
portable to any SUN machine.

Apart from the scalability tests, most of the ex-
periments reported here were carried out with
1000 randomly selected travelers for each modal
choice. For experiments we considered three ba-
sic modal choices: walk, walk-car-walk, walk-



transit-walk, where transit was either a bus or
light rail.

9 Shortcuts and heuristics

A number of data structure and algorithmic
heuristics were employed to improve the execu-
tion time of the algorithms. We list some of them
below.

Parallelization. The implementation may
use multiple threads running in parallel and it
may also be distributed across multiple machines
using MPI. Threads enable the parallel execution
of several copies of the path-finding algorithm
on a shared-memory machine. Each thread uses
the same copy of the network. Because separate
threads are used for reading, writing and plan-
ning, improvements in the running time may be
observed even with a single-processor machine.

Implicit vs. explicit network modification.
We argued that a unified algorithm allows plan-
ning of multiple travelers on a single network,
thus circumventing the time-consuming task of
generating a new network for each traveler. How-
ever, in our implementation, some restrictions on
the regular language are in fact implemented us-
ing a trick that allows transparent network mod-
ification on a traveler-by-traveler basis. Within
the route planner, the network is constructed in
layers consisting of car, walk and transit links,
with walk links also crossing between car and
transit layers. It is possible to order the addi-
tion of edges to the network so that edges with
a fixed label form a consecutive interval in the
adjacency list of each vertex. Thus for example,
edges numbered 0 to 7; will be car links, those
from 31 + 1 to 49 transit links and those from
19 + 1 to 43 transit links. Then if the traveler
is only allowed to use walk and transit links, we
ask Dijkstra’s algorithm to only examine the end
of each adjacency list and ignore car links com-
pletely, at the cost of a single extra table lookup
per vertex examined. This trick can be extended
to modifying the adjacency list in more general
ways as long as the links are added to the net-
work in a sensible order.

Compile-time optimization. A simpler al-

gorithm suffices for some types of plans. For ex-
ample, all-car or all-walk plans should not re-
quire the overhead of examining the NFA and
may be planned more efficiently if only a part of
the network is examined. In addition to the net-
work modification trick just described, for such
cases we use a separately optimized and compiled
procedure implemented using the C++ template
mechanism.

Sedgewick-Vitter. One of the additional
optimizations we’ve used for all-car plans is the
Sedgewick-Vitter [SV86] heuristic for Euclidean
shortest paths that biases the search in the di-
rection of the source-destination vector. We note
that the above algorithms, only require that the
Euclidean distance between any two nodes is a
valid lower bound on the actual shortest distance
between these nodes. This is typically the case
for road networks; the link distance between two
nodes in a road network typically accounts for
curves, bridges, etc. and is at least the Fuclidean
distance between the two nodes. Moreover in the
context of TRANSIMS, we need to find fastest
paths, i.e. the cost function used to calculate
shortest paths is the time taken to traverse the
link. Such calculations need an upper bound on
the maximum allowable speed. To adequately
account for all these inaccuracies, we determine
an appropriate lower bound factor between Eu-
clidean distance and assumed delay on a link in
a preprocessing step.

We can modify the basic Dijkstra’s algorithm
by giving an appropriate weight to the distance
from z to t. By choosing an appropriate multi-
plicative factor, we can increase the contribution
of the second component in calculating the la-
bel of a vertex. From a intuitive standpoint this
corresponds to giving the destination a high po-
tential, in effect biasing the search towards the
destination. This modification will in general
not yield shortest paths, nevertheless our exper-
imental results suggest that the errors produced
can be kept reasonably small. This multiplica-
tive factor is called the overdo parameter.
Because street networks are not always dense
and regular due to natural and man-made obsta-
cles and also because our delays are not constant,
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the paths produced using SV are not strictly op-
timal. However, varying the amount of the bias
allows a useful tradeoff between the speed and
quality of paths found.

Running time vs. graph size. The run-
ning time of Dijkstra’s algorithm directly de-
pends on the size of the graph. With larger NFAs
(and especially with time-dependence), this size
may become a very large number, however with
the fairly regular street networks, a more accu-
rate predictor of the running time is in fact the
length (the number of edges) of the path found
by the algorithm.

Traversal functions. The link-traversal
functions are represented using an array of seg-
ments. To calculate the delay of an edge at a
certain time, the correct segment is first deter-
mined using binary search and then the rest is
easy.

Turn costs.  Turning left may take more time
than going straight on through the intersection
or turning right. This is easy to implement by
expanding each vertex into an in- and out-vertex
for each in- and out-going link. However, this
expansion need not be explicit: if the current
node index also contains the index of the link
used to enter the node, we can calculate the turn
costs on the fly.

Multicost experiments. In order to model
certain aspects of traveler behavior for which
NFAs are insufficient, another component may
be added to the time delays. For example, cer-
tain cost may be associated with some links and
the objective might be to minimize a weighted
sum of the costs and time-delays along a path.
Delay noise. One of the attempts to speed
up the convergence of the system in succes-
sive planner-microsimulation iterations included
adding a small random noise value to each link
delay. Strange behavior resulted, but this should
have been expected. For example, cars would
pull out of a parking lot, drive to the first in-
tersection and promptly make a U-turn to go
back in the direction they could have taken the
first time. The problem of course is that random
noise violates the FIFO condition.

Other jokes the planner told us. Parking

18

locations in the network caused other problems
as well. For example, unless care is taken (by
implementing turn costs or by separating park-
ing lots associated with the two directions along
a link), drivers will use parking lots to make il-
legal U-turns. Buses were a whole other story.
Early after transit modes were implemented, a
number of travelers were noticed to transfer be-
tween buses multiple times on a trip to save only
a few seconds. One of the fixes used has been to
increase the time required to transfer between
buses (by forcing the traveler to walk off the bus
to the node in the walk layer of the network as-
sociated with the transit stop).

10 More on time-dependence

Definition 10.1. Let f: Q — Q be a (weakly)
monotonic (piecewise-linear) function.  Then
g: Q = Q is a weak inverse of f if for all x
andt in Q f(r) <t=z <g(t) and t < f(z) =
g(t) < z.

Let g be any weak inverse of f. This definition
leaves the freedom of choosing an “optimistic”
or “pessimistic” weak inverse for the local sit-
uations where f is constant. Otherwise ¢ is
uniquely determined. This stems from the fact
that {z|f(z) = t} is for all ¢ an interval. For
values of z, where f is not locally constant, i.e.
when {z|f(z) =t} is a single value. Then for all
¢ > 0 we have (by weak monotonicity of f that
f(z —¢) < f(z) < f(z +¢). This implies then
z —¢ < g(f(x)) < z+e¢, hence g(f(z)) = =.

g is non-decreasing (weak monotone increasing).
Let ¢t < s. If there exists an z such that ¢ <
f(z) < s, we immediately get g(t) < z < g(s).
Otherwise take some u such that ¢t < u < s.
By the assumption of this case, there can’t be
an z such that f(z) = u. Therefore are I =
{z|f(z) < u} and J = {z|f(z) > u} are two
intervals such that I UJ = Q. If both of them
are open, there exists an z such that for all £ >
0O we have z — ¢ € I and z+¢ € J. So we
have f(z +¢€) > u > t and hence z + ¢ > ¢(t).
Analogously we get f(z —¢) < u < s and hence
z —¢e < g(s). Together we get g(t) < z < g(s).



If J is the empty set or then singleton {400},
we get for all x € Q that f(z) < s and therefore
z < g(s), hence g(s) = co. Analogously, if T is
not open we get g(t) = —oo. So we trivially get
weak monotonicity in these cases. It is easy to
verify that f is also weak inverse of g.

Proof. (Proposition 5.4.) To verify the above
claim, assume c is given by the value pairs
¢z (%) and cy(i).Define az(i) = cz(i) and ay(i) =
ag (i) + f - (cy(i) — cz(i)) Define by (i) = ay(i) and
by(i) = ¢y(é). The condition that a splits ¢ at
fraction f is obvious by the definition of a. For
the second condition, first note that aob matches
with ¢ for the values c; (7). As the images of ¢, (%)
under a are the only non-linearity points in the
domain of b, it follows a o b = c¢. Note that in
the above proof the definition of @ can more or
less arbitrarily depend on ¢ and there still exists
a proper extension function b. O

10.1 Waiting models and theory

Three different waiting policies have been stud-
ied in the literature [OR90].

Forbidden waiting: compatible with Defini-
tion 5.1.

Unrestricted waiting: waiting allowed every-
where. Relaxes Definition 5.1 to f(;) < tj41-
Source Waiting: waiting only allowed at the
source.

Especially with unrestricted waiting, it is use-
ful to consider a modification of the link traver-
sal function. Given the original link traversal
function f, we define the optimal-waiting link
traversal function g by g(t) = infy>; f(t). This
captures the optimal waiting strategy for a trav-
eler by combining the optimal waiting at a node
with the time needed to traverse the link. If
the infimum is not a minimum, there may be
no optimal path. Then the best we can hope
for is to find a path such that adjusting the
waiting times achieves an arrival time arbitrar-
ily close to the optimal arrival time. In the
sequel we assume for simplicity that this infi-
mum is always achieved. As mentioned earlier,
the basic results on this topic can be found in
[Ch97a, Ch97b, OR90, ZM95].

We summarize the computational complexity of
shortest-path problems in time-dependent net-
works with various forms of waiting. As stated
earlier some of these results are not new [Ch97a,
Ch97b, OR90, ZM95].

Theorem 10.2. (1) In the forbidden waiting
model with arbitrary link-traversal functions and
a given departure time, finding o path with ear-
liest arrival time is NP-hard. For monotonic,
nonnegative link-traversal functions, the problem
is polynomaial time solvable.

(2) In the unrestricted waiting model with pos-
itive delay link traversal functions, with poly-
nomial time computable optimal-waiting link-
traversal functions, the problem of computing a
path with the earliest arrival time is solvable in
polynomial time.

(3) For the source waiting model with arbitrary
functions, the earliest possible arrival time is as
hard as the problem for the forbidden waiting
model.

Sketch of the Proof of Theorem 10.2:

Part 1. NP-hardness follows by a polynomial
time reduction from the partition problem. For a
monotonic, positive delay function, the problem
can be solved using a straightforward extension
of Dijkstra’s label setting algorithm: instead of
setting labels for the shortest path distance we
set labels for the earliest possible arrival time. As
the functions represent positive delays, we can
set the labels starting from the smallest without
having to change them later on. Because the
functions are monotonic, it is sufficient to con-
sider the earliest possible time to start into a link
(it cannot pay off to start into it later).

Part 2.  Note that the Optimal-Waiting link
traversal functions are monotonic and inherit the
positive delay property. Therefore the algorithm
described in the main body of the paper can be
used. As for every topology of a path one fastest
path is represented, the computed path is opti-
mal.

Part 3. By adding links that can only be
traversed at a certain point of time, we get a
reduction from the Forbidden Waiting earliest
arrival problem. ]
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